HSTS preload

If you have already started using HSTS to force users to your HTTPS website, the use of ‘preload’ is another simple addition as it only requires the addition of the keyword to the header.

Once done, you can either wait for your site to be identified (which can take a long time, or forever for less popular websites) or ideally, submit your hostname to be added to the lists preloaded in many modern browsers. The advantage here is that your users will never make a single request to your HTTP website and will automatically be directed to HTTPS.

An HTTP Header example:

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

Apache2 configuration example:

Header always set Strict-Transport-Security "max-age=31536000; includeSubDomains; preload"

REFERENCES:

HTML5 preconnect

In addition to dns-prefetch, you can take browser performance one step further by actually creating a new connection to a resource.

By initiating an early connection, which includes the DNS lookup, TCP handshake, and optional TLS negotiation, you allow the user agent to mask the high latency costs of establishing a connection.

Supported in:

  • Firefox 39+ (Firefox 41 for crossorigin)
  • Chrome 46+
  • Opera


<link rel="preconnect" href="//example.com" />
<link rel="preconnect" href="//cdn.example.com" crossorigin />

REFERENCES:

HTTP Strict Transport Security (HSTS)

The HTTP Strict Transport Security feature lets a web site inform the browser that it should never load the site using HTTP, and should automatically convert all attempts to access the site using HTTP to HTTPS requests instead.

Example Use case:
If a web site accepts a connection through HTTP and redirects to HTTPS, the user in this case may initially talk to the non-encrypted version of the site before being redirected, if, for example, the user types http://www.foo.com/ or even just foo.com.

Problem:
This opens up the potential for a man-in-the-middle attack, where the redirect could be exploited to direct a user to a malicious site instead of the secure version of the original page.

Risk:
For HTTP sites on the same domain it is not recommended to add a HSTS header but to do a permanent redirect (301 status code) to the HTTPS site.

Bonus:
Google is always “tweaking” their search algorithms, and, at least at present time, gives greater weight to secure websites.


# Optionally load the headers module:
LoadModule headers_module modules/mod_headers.so

<VirtualHost *:443>
# Guarantee HTTPS for 1 Year including Sub Domains
Header always set Strict-Transport-Security "max-age=31536000; includeSubdomains; preload"
</VirtualHost>

Then you might (optionally, but recommended) force ALL HTTP users to HTTPS:

# Redirect HTTP connections to HTTPS
<VirtualHost *:80>
ServerAlias *
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{HTTPS} off
#RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI} [R=301,L]
RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [redirect=301]
</IfModule>
</VirtualHost>

That’s it…

REFERENCES:

Poodle.. or rather, what’s all the fuss with SSLv3

The “Poodle” attack on websites and browsers was all over the media a few weeks ago, following in the shadow of Heartbleed.

Here’s what most users need to know… This is an vulnerability that exists in secure internet communication because…

  1. While most newer systems rely on TLS security, they still support older protocols (SSLv3 in particular for this issue)
  2. As secure communications generally attempt to find a “common” method, they will often “drop down” to older supported versions (even if they are now often considered insecure!)
  3. Most browser and server software (unless recently patched) will allow for this “drop down” in security.
  4. Most software provides a mechanism to disable this by the user or in configuration.
  5. Upgrading your software will usually remove these “problematic” vulnerabilities.

Simply put… for a consumer, it’s best to upgrade to a newer browser or find the appropriate configuration to disable SSLv3 if you are unable to upgrade. Server administrators generally should update their sofware on a regular basis for security items such as this one!

NOTE: Many CDN’s such as CloudFlare are proactive and block this vulnerability.

Technical details on the Poodle vulnerability (if you’re into that sort of thing!):

Instructions here are for Apache HTTPd 2.2.23 and newer, other servers will require a similar change:


  1. sudo vi /etc/apache2/mods-enabled/ssl.conf
  2. Change the following line from:
    SSLProtocol All -SSLv2
    to:
    SSLProtocol All -SSLv2 -SSLv3
  3. sudo service apache2 reload
  4. sudo service apache2 restart

Can be tested at the following websites:

REFERENCES:

Install free “recognized” SSL certificates for Apache2

Once you have your server running with a self-signed certificate you might find it useful to have a “real” certificate that does not warn users.

Many of the CA’s provide test certificates that are generally valid for 30-60 days, I’ve recently discovered StartSSL, that generates free certificates that are valid for a full year.

  1. Generating keys and certificates….

    NOTE: this process is rather involved and is documented better elsewhere, here’s what I needed to remember to get the keys and certificates.

    • save ssl.key (private)
    • save ssl.crt (pem encoded)
    • get file from control panel: sub.class1.server.ca.pem
  2. Make sure that you move all three files to the /etc/apache2/ssl/ folder on the server.
  3. Edit the config file…
    sudo vi /etc/apache2/sites-available/default-ssl.conf

    Modify the values related to the keys and certs…

    SSLCertificateFile /etc/apache2/ssl/ssl.crt
    SSLCertificateKeyFile /etc/apache2/ssl/ssl.key
    SSLCertificateChainFile /etc/apache2/ssl/sub.class1.server.ca.pem

  4. Reload the config and restart…

    sudo service apache2 reload
    sudo service apache2 restart
  5. Test it out…
    https://www.ssllabs.com/ssltest/analyze.html?d=YOURDOMAIN.COM

REFERENCES:

Create self-signed SSL certificates for Apache on Ubuntu

To increase the security of your web applications, it is a standard process to enable HTTPS/SSL/TLS. Unfortunately, purchasing certificates can often be very expensive. Luckily, you can create a self-signed certificate for free for casual use or testing.

These steps are for Ubuntu, I wrote similar documentation for the Windows platform that you can find way back in my blog archives!

NOTE: As certificates generated in this manner are not verified by any recognized authority, many browsers will warn users (often in frightening language) about their insecurity. As stated above, these are best used only for internal use.

  1. First you will need to have apache2 installed, at a minimum you need to run:
    sudo apt-get install apache2
  2. Enable the SSL module:
    sudo a2enmod ssl

  3. Create the folder to store the keys and certificates:
    sudo mkdir /etc/apache2/ssl

  4. Generate a private key and certificate:

    sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/apache2/ssl/apache.key -out /etc/apache2/ssl/apache.crt

    Enter reasonable values for the fields in question.
    For FQDN Common Name enter *.domain.com for wildcard support!

  5. Edit the config file:

    sudo vi /etc/apache2/sites-available/default-ssl.conf

  6. Un-comment or update the following lines:

    ServerName YOURDOMAIN.COM
    ServerAlias WWW.YOURDOMAIN.COM
    SSLCertificateFile /etc/apache2/ssl/apache.crt
    SSLCertificateKeyFile /etc/apache2/ssl/apache.key

  7. Enable to SSL website and restart:

    sudo a2ensite default-ssl.conf
    sudo service apache2 reload
    sudo service apache2 restart

  8. Test it out… provided your firewall routes port 443 to your server.

    https://www.ssllabs.com/ssltest/analyze.html?d=YOURDOMAIN.COM

REFERENCES: